A scratch free future for mobile phones and glasses on cards thanks to Irish research

Researchers based in Trinity College are to coordinate a project to mass produce scratch and abrasion resistant and anti-reflective surfaces that can be applied on mobile phones, camera lenses, and car components.

Dr Parvaneh Mokarian, Senior Research Fellow at AMBER, the Science Foundation Ireland funded materials science centre based at Trinity College Dublin, will coordinate a major European project valued at €8.2m to pioneer the mass production of scratch and abrasion resistant and anti-reflective surfaces.

The team’s new generation surfaces will offer enhanced performance to a range of products including anti-reflective surfaces for electronics displays such as mobile phones and tablets, eyewear, video glasses, image sensors, and anti-fingerprint and soft-touch plastic parts for the automotive industry. Industry partners that are involved have committed to pilot the technology after the research project is finished.

The 4-year SUN-PILOT (Piloting of Innovative Subwavelength Nanostructure Technology for Optical and Injection Moulding Applications) collaborative project has been awarded €7.1 million through Europe’s Horizon 2020 programme, with the remainder of the €1.1 million coming from industry.

The technologies developed by SUN-PILOT will focus on solutions for the Optics and Automotive industries, where these nano-patterned surfaces will have a significant impact. SUN-PILOT involves 13 partners from 6 European countries – 5 multinationals, including Coherent (Scotland - the world’s leading suppliers of laser solutions) and Grupo Antolin (Spain - one of the largest players in the car interiors market); 4 SMEs including Irish Precision Optics; 2 universities; and 2 research institutes.

AMBER will receive €2.1m of the total research funding sum, which is the largest amount Trinity has ever been awarded for a collaborative Horizon 2020 project. The composition of this consortium will allow a full research-development-innovation cycle with the scale-up of part production on active pilot lines, including injection moulding for production of car parts and the scale-up of nanomaterials.

Dr Parvaneh Mokarian, Senior Research Fellow at AMBER and Trinity’s School of Chemistry said: “For many devices, unwanted reflections of light can seriously compromise system performance and effectiveness, particularly with lasers and other optical systems. Current anti-reflection solutions typically rely on thin-film coatings comprising multiple layers of materials deposited onto each and every reflecting surface along the optical path.

"These coatings require careful design and engineering of the thicknesses and refractive index of the thin-films, and batch processes that involve relatively high temperatures. This is not commercially viable with plastic screens used, for example, in tablet and mobile phone screens.

"SUN-PILOT will look to reduce the cost of anti-reflective precision optics manufacture by at least 75% by replacing complex and demanding anti-reflective multilayer coatings with a single nano-patterned surface. We are confident that our research will have a major impact for both the optics industry and in the automotive industry.

"We are delighted to have been chosen to lead on this major multi-million-euro European project and look forward to working with all of the relevant partners over the following 4 years. The preparation of this consortium was lengthy, and the team is incredibly grateful to Enterprise Ireland for their support, particularly through the Coordinator Support grant and their National Contact Points.”

SUN-PILOT will develop the new scratch resistant and anti-reflection technologies using the “Zeroptica” surface nano-patterning process developed and patented by Dr Mokarian in AMBER and which can be applied across a range of materials.

The surfaces will also provide superior wear resistant properties compared to current coated solutions and will offer new self-cleaning and anti-bacterial properties. Dr Mokarian developed the technology with support from Enterprise Ireland’s Commercialisation funding.

Dr Parvaneh Mokarian continued: “AMBER’s Zeroptica technology is based on block copolymers (structured molecular units) that deliver self-assembled nano-patterned masks onto any substrate. The advantage of this technique compared to other existing patterning methods is that it is solution based which means it can be applied on curved surfaces (camera lenses) and large areas such as solar cells.

"It is also cheap and doesn’t require any expensive equipment. Other available techniques used today either use harsh chemicals for patterning which are not environmentally friendly or require expensive equipment or can only be applied on flat surfaces (lithography).”

The global market for antireflection coatings is projected to be worth more than US$6.1 billion per year by 2021.

Antireflection coatings are used in multiple markets including technical optics, eyewear, electronics, architectural, solar, automobile, video glasses, image sensors. Despite the demand and the large market opportunity, these coatings are not common on electronic displays due to the high cost of the current technology and the lack of durability of the coatings in challenging environments.

SUN-PILOT will also benefit the automotive industry, which is a huge user of injected plastic parts e.g. for instrument panels, door panels, lighting consoles. The global injection moulded plastic market is expected to reach US$296 billion by 2022. SUN-PILOT will develop nano-patterning moulds for injection moulding of plastic parts for the automotive industry to achieve functions such as soft touch or enhanced colour. The most demanded finishing in interior parts are either highly bright (like Piano-Black) or soft-touch surfaces. SUN-PILOT will provide anti-fingerprint bright parts and soft-touch parts in the injection moulding process in one step, compared to the multi-step process currently required.

At the recent Trinity Innovation Awards 2017 Dr Parvaneh Mokarian was awarded a prize by Provost, Dr Patrick Prendergast in the “One-2-watch”category for her innovation research and entrepreneurship.

- Digital desk


 

Join the conversation - comment here

House Rules for comments - FAQ - Important message for commenters


Most Read in Ireland